Course Title	Advanced Fluid Mechanics	Code						
Dept./ Specialization	Mechanical	Structure (LTPC)	3	1	0	4		
To be offered for	UG / PG students	Status	Core Elective		e III			
Faculty Proposing the course	Dr. Karthick S	Туре	New		Modifi	cation		
Recommendation	from the DAC: Recommended	Date of DAC	08-10-202	4				
External Expert(s)	Professor. Suman Chakraborty Professor. Amit Agarwal (IIT B)					
Pre-requisite	Basic Fluid Mech	anics	Submitted for approval					
Learning Objectives	Develop a deep understanding of fluid dynamics principles and their mathematical formulations. Apply advanced concepts to solve complex fluid mechanics problems in real-world applications.							
Learning Outcomes	Upon completing this course, students will gain a deep understanding of advanced fluid mechanics principles and be able to apply them to solve comple fluid mechanics problems.							
	Recap of Fundamentals: Continuum Hypothesis and Fluid Kinematics. (L3+T2) Reynolds transport theorem and Integral form Equations. (L4+T2)							
	Constitutive relations and the Navier Stokes equation for Newtonian fluids Analytical solutions of the transient and steady Navier Stokes equations for incompressible viscous flows. (L6+T4							
	Inviscid flows and their flow past immersed bodies.							
Contents of the course	Boundary layer theory, Blasius Solution for flat plate, Von Kármán Momentur Integral equations, and Flow separation. (L9+T3							
	Turbulence, Derivation of RANS equations; turbulent shear flows.							
	The Navier-Stokes regularity problem.							
	Special topics: The circulatory system in the Human body, Fluid flow in pla and effluent dispersal. (L4)							
Text Book	Pijush K. Kundu, Ira M. Cohe Edition, 2012. Landau, L. D., & Lifshitz, E. Edition, 2013.		Mark Control					
Reference Books	Tritton, David J. Physical fluid The films, and text material from White F. M., & Xue, H. Fluid n R. Fox and A. MacDonald, Intro	n National Commechanics, McGr	mittee for Flui aw-Hill Educa	d Mec ation, l	hanics Fi Ninth Edi	lms (NCFMF tion, 2022.		